|
|
STRONGcvt , STRONGcvt_base , STRONGcvt_byname , collate , collate_byname , ctype , ctype<char> , ctype_base , ctype_byname , has_facet , locale , messages , messages_base , messages_byname , money_base , money_get , money_put , moneypunct , moneypunct_byname , num_get , num_put , numpunct , numpunct_byname , time_base , time_get , time_get_byname , time_put , time_put_byname , use_facet , isalnum , isalpha , iscntrl , isdigit , isgraph , islower , isprint , ispunct , isspace , isupper , isxdigit , tolower , toupper - defines several classes and templates that control locale-specific behavior, as in the iostreams classes
namespace std { class locale; class ctype_base; template<class E> class ctype; template<> class ctype<char>; template<class E> class ctype_byname; class codecvt_base; template<class From, class To, class State> class codecvt; template<class From, class To, class State> class codecvt_byname; template<class E, class InIt> class num_get; template<class E, class OutIt> class num_put; template<class E> class numpunct; template<class E> class numpunct_byname; template<class E> class collate; template<class E> class collate_byname; class time_base; template<class E, class InIt> class time_get; template<class E, class InIt> class time_get_byname; template<class E, class OutIt> class time_put; template<class E, class OutIt> class time_put_byname; class money_base; template<class E, bool Intl, class InIt> class money_get; template<class E, bool Intl, class OutIt> class money_put; template<class E, bool Intl> class moneypunct; template<class E, bool Intl> class moneypunct_byname; class messages_base; template<class E> class messages; template<class E> class messages_byname; // TEMPLATE FUNCTIONS template<class Facet> bool has_facet(const locale& loc); template<class Facet> const Facet& use_facet(const locale& loc); template<class E> bool isspace(E c, const locale& loc) const; template<class E> bool isprint(E c, const locale& loc) const; template<class E> bool iscntrl(E c, const locale& loc) const; template<class E> bool isupper(E c, const locale& loc) const; template<class E> bool islower(E c, const locale& loc) const; template<class E> bool isalpha(E c, const locale& loc) const; template<class E> bool isdigit(E c, const locale& loc) const; template<class E> bool ispunct(E c, const locale& loc) const; template<class E> bool isxdigit(E c, const locale& loc) const; template<class E> bool isalnum(E c, const locale& loc) const; template<class E> bool isgraph(E c, const locale& loc) const; template<class E> E toupper(E c, const locale& loc) const; template<class E> E tolower(E c, const locale& loc) const; };
Include the standard header <locale>
to define a host of template classes and functions that encapsulate
and manipulate locales.
intern_type , extern_type , state_type , codecvt , in , out , unshift , always_noconv , max_length , length , encoding , id , do_in , do_out , do_unshift , do_always_noconv , do_max_length , do_encoding , do_length
template<class From, class To, class State> class codecvt : public locale::facet, codecvt_base { public: typedef From intern_type; typedef To extern_type; typedef State state_type; explicit codecvt(size_t refs = 0); result in(State& state, const To *first1, const To *last1, const To *next1, From *first2, From *last2, From *next2); result out(State& state, const From *first1, const From *last1, const From *next1, To *first2, To *last2, To *next2); result unshift(State& state, To *first2, To *last2, To *next2); bool always_noconv() const throw(); int max_length() const throw(); int length(State& state, const To *first1, const To *last1, size_t _N2) const throw(); int encoding() const throw(); static locale::id id; protected: ~codecvt(); virtual result do_in(State& state, const To *first1, const To *last1, const To *next1, From *first2, From *last2, From *next2); virtual result do_out(State& state, const From *first1, const From *last1, const From *next1, To *first2, To *last2, To *next2); virtual result do_unshift(State& state, To *first2, To *last2, To *next2); virtual bool do_always_noconv() const throw(); virtual int do_max_length() const throw(); virtual int do_encoding() const throw(); virtual int do_length(State& state, const To *first1, const To *last1, size_t len2) const throw(); };
The template class describes an object that can serve as a
locale facet, to control conversions between
a sequence of values of type From
and a sequence of values of type To
.
The class State
characterizes the transformation -- and an object of class
State
stores any necessary state information during
a conversion.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
The template versions of
do_in
and
do_out
always return
codecvt_base::noconv
.
The Standard C++ library defines an explicit specialization, however,
that is more useful:
template<> codecvt<wchar_t, char, mbstate_t>
which converts between wchar_t
and char sequences.
bool always_noconv() const throw();
The member function returns
do_always_noconv()
.
explicit codecvt(size_t refs = 0);
The constructor initializes its
locale::facet
base object with
locale::facet(refs)
.
virtual bool do_always_noconv() const throw();
The protected virtual member function returns true only if every call to
do_in
or
do_out
returns
noconv
.
The template version always returns true.
virtual int do_encoding() const throw();
The protected virtual member function returns:
extern_type
is state dependentn
, if the encoding involves only sequences of length
n
virtual result do_in(State state&, const To *first1, const To *last1, const To *next1, From *first2, From *last2, From *next2);
The protected virtual member function endeavors to convert the
source sequence at [first1, last1)
to a destination sequence that it
stores within [first2, last2)
. It always stores in
next1
a pointer to the first unconverted element in
the source sequence, and it always stores in next2
a
pointer to the first unaltered element in the destination sequence.
state
must represent the
initial conversion state
at the beginning of a new source sequence. The function alters its stored
value, as needed, to reflect the current state of a
successful conversion. Its stored value is otherwise unspecified.
The function returns:
codecvt_base::error
if the source sequence is ill formedcodecvt_base::noconv
if the function performs no conversioncodecvt_base::ok
if the conversion succeedscodecvt_base::partial
if the source is insufficient, or if the destination is not large enough,
for the conversion to succeedThe template version always returns noconv
.
virtual int do_length(State state&, const To *first1, const To *last1, size_t len2) const throw();
The protected virtual member function effectively calls
do_in(state, first1,
last1, next1, buf, buf + len2, next2)
for some buffer buf
and pointers
next1
and next2
,
then returns next2 - buf
.
(Thus, it counts the maximum number of conversions,
not greater than len2
, defined by the
source sequence at [first1, last1)
.)
The template version always returns the lesser of
last1 - first1
and len2
.
virtual int do_max_length() const throw();
The protected virtual member function returns
the largest permissible value that can be returned by
do_length(first1,
last1, 1)
, for arbitrary valid values of first1
and last1
. (Thus, it is roughly analogous to the macro
MB_CUR_MAX
, at least
when To
is type char
.)
The template version always returns 1.
virtual result do_out(State state&, const From *first1, const From *last1, const From *next1, To *first2, To *last2, To *next2);
The protected virtual member function endeavors to convert the
source sequence at [first1, last1)
to a destination sequence that it
stores within [first2, last2)
. It always stores in
next1
a pointer to the first unconverted element in
the source sequence, and it always stores in next2
a
pointer to the first unaltered element in the destination sequence.
state
must represent the
initial conversion state
at the beginning of a new source sequence. The function alters its stored
value, as needed, to reflect the current state of a
successful conversion. Its stored value is otherwise unspecified.
The function returns:
codecvt_base::error
if the source sequence is ill formedcodecvt_base::noconv
if the function performs no conversioncodecvt_base::ok
if the conversion succeedscodecvt_base::partial
if the source is insufficient, or if the destination is not large enough,
for the conversion to succeedThe template version always returns noconv
.
virtual result do_unshift(State state&, To *first2, To *last2, To *next2);
The protected virtual member function endeavors to convert the
source element From(0)
to a destination sequence that it
stores within [first2, last2)
, except for the terminating
element To(0)
. It always stores in next2
a
pointer to the first unaltered element in the destination sequence.
state
must represent the
initial conversion state
at the beginning of a new source sequence. The function alters its stored
value, as needed, to reflect the current state of a
successful conversion. Typically, converting the source element
From(0)
leaves the current state in the initial conversion state.
The function returns:
codecvt_base::error
if state
represents an invalid statecodecvt_base::noconv
if the function performs no conversioncodecvt_base::ok
if the conversion succeedscodecvt_base::partial
if the destination is not large enough for the conversion to succeedThe template version always returns noconv
.
typedef To extern_type;
The type is a synonym for the template parameter To
.
result in(State state&, const To *first1, const To *last1, const To *next1, From *first2, From *last2, From *next2);
The member function returns
do_in(state, first1, last1,
next1, first2, last2, next2)
.
typedef From intern_type;
The type is a synonym for the template parameter From
.
int length(State state&, const To *first1, const To *last1, size_t len2) const throw();
The member function returns
do_length(first1,
last1, len2)
.
int encoding() const throw();
The member function returns
do_encoding()
.
int max_length() const throw();
The member function returns
do_max_length()
.
result out(State state&, const From *first1, const From *last1, const From *next1, To *first2, To *last2, To *next2);
The member function returns
do_out(state, first1, last1,
next1, first2, last2, next2)
.
typedef State state_type;
The type is a synonym for the template parameter State
.
result unshift(State state&, To *first2, To *last2, To *next2);
The member function returns
do_unshift(state,
first2, last2, next2)
.
class codecvt_base { public: enum result {ok, partial, error, noconv}; };
The class describes an enumeration common to all specializations of
template class codecvt
. The enumeration
result
describes the possible return values from
do_in
or
do_out
:
error
if the source sequence is ill formednoconv
if the function performs no conversionok
if the conversion succeedspartial
if the destination is not large enough for the conversion to succeedtemplate<class From, class To, class State> class codecvt_byname : public codecvt<From, To, State> { public: explicit codecvt_byname(const char *s, size_t refs = 0); protected: ~codecvt_byname(); };
The template class describes an object that can serve as a
locale facet of type
codecvt<From, To, State>
.
Its behavior is determined by the
named locale s
.
The constructor initializes its base object with
codecvt<From,
To, State>(refs)
.
char_type , string_type , collate , compare , transform , hash , id , do_compare , do_transform , do_hash
template<class E> class collate : public locale::facet { public: typedef E char_type; typedef basic_string<E> string_type; explicit collate(size_t refs = 0); int compare(const E *first1, const E *last1, const E *first2, const E *last2) const; string_type transform(const E *first, const E *last) const; long hash(const E *first, const E *last) const; static locale::id id; protected: ~collate(); virtual int do_compare(const E *first1, const E *last1, const E *first2, const E *last2) const; virtual string_type do_transform(const E *first, const E *last) const; virtual long do_hash(const E *first, const E *last) const; };
The template class describes an object that can serve as a
locale facet, to control comparisons
of sequences of type E
.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
typedef E char_type;
The type is a synonym for the template parameter E
.
explicit collate(size_t refs = 0);
The constructor initializes its base object with
locale::facet(refs)
.
int compare(const E *first1, const E *last1, const E *first2, const E *last2) const;
The member function returns
do_compare(first1, last1,
first2, last2)
.
virtual int do_compare(const E *first1, const E *last1, const E *first2, const E *last2) const;
The protected virtual member function compares the sequence at
[first1, last1)
with the sequence at
[first2, last2)
. It compares values
by applying operator<
between pairs of corresponding elements of type E
.
The first sequence compares less if it has the smaller element in
the earliest unequal pair in the sequences, or if no unequal
pairs exist but the first sequence is shorter.
If the first sequence compares less than the second sequence, the function returns -1. If the second sequence compares less, the function returns +1. Otherwise, the function returns zero.
virtual long do_hash(const E *first, const E *last) const;
The protected virtual member function returns an integer derived
from the values of the elements in the sequence
[first, last)
. Such a hash value can be useful,
for example, in distributing sequences pseudo randomly
across an array of lists.
virtual string_type do_transform(const E *first, const E *last) const;
The protected virtual member function returns an object of class
string_type
whose controlled
sequence is a copy of the sequence [first, last)
.
If a class derived from collate<E>
overrides
do_compare
, it should
also override do_transform
to match. Put simply, two
transformed strings should yield the same result, when passed to
collate::compare
, that you would get from passing the
untransformed strings to compare
in the derived class.
long hash(const E *first, const E *last) const;
The member function returns
do_hash(first, last)
.
typedef basic_string<E> string_type;
The type describes a specialization of template class
basic_string
whose objects can store copies of the source sequence.
string_type transform(const E *first, const E *last) const;
The member function returns
do_transform(first,
last)
.
template<class E> class collate_byname : public collate<E> { public: explicit collate_byname(const char *s, size_t refs = 0); protected: ~collate_byname(); };
The template class describes an object that can serve as a
locale facet of type
collate<E>
.
Its behavior is determined by the
named locale s
.
The constructor initializes its base object with
collate<E>(refs)
.
char_type , ctype , do_is , do_narrow , do_scan_is , do_scan_not , do_tolower , do_toupper , do_widen , is , narrow , scan_is , scan_not , tolower , toupper , widen
template<class E> class ctype : public locale::facet, public ctype_base { public: typedef E char_type; explicit ctype(size_t refs = 0); bool is(mask msk, E ch) const; const E *is(const E *first, const E *last, mask *dst) const; const E *scan_is(mask msk, const E *first, const E *last) const; const E *scan_not(mask msk, const E *first, const E *last) const; E toupper(E ch) const; const E *toupper(E *first, E *last) const; E tolower(E ch) const; const E *tolower(E *first, E *last) const; E widen(char ch) const; const char *widen(char *first, char *last, E *dst) const; char narrow(E ch, char dflt) const; const E *narrow(const E *first, const E *last, char dflt, char *dst) const; static locale::id id; protected: ~ctype(); virtual bool do_is(mask msk, E ch) const; virtual const E *do_is(const E *first, const E *last, mask *dst) const; virtual const E *do_scan_is(mask msk, const E *first, const E *last) const; virtual const E *do_scan_not(mask msk, const E *first, const E *last) const; virtual E do_toupper(E ch) const; virtual const E *do_toupper(E *first, E *last) const; virtual E do_tolower(E ch) const; virtual const E *do_tolower(E *first, E *last) const; virtual E do_widen(char ch) const; virtual const char *do_widen(char *first, char *last, E *dst) const; virtual char do_narrow(E ch, char dflt) const; virtual const E *do_narrow(const E *first, const E *last, char dflt, char *dst) const; };
The template class describes an object that can serve as a
locale facet, to characterize
various properties of a ``character'' (element) of type E
.
Such a facet also converts between sequences of E
elements and sequences of char.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
The Standard C++ library defines two explicit specializations of this template class:
ctype<char>
,
an explicit specialization whose differences are described separatelyctype<wchar_t>
, which treats elements as
wide charactersIn this
implementation,
other specializations of template class ctype<E>
:
ch
of type E
to
a value of type char with the expression (char)ch
c
of type char to
a value of type E
with the expression
E(c)
All other operations are performed on char values the same
as for the explicit specialization ctype<char>
.
typedef E char_type;
The type is a synonym for the template parameter E
.
explicit ctype(size_t refs = 0);
The constructor initializes its
locale::facet
base object with
locale::facet(refs)
.
virtual bool do_is(mask msk, E ch) const; virtual const E *do_is(const E *first, const E *last, mask *dst) const;
The first protected member template function returns true if
MASK(ch) & msk
is nonzero,
where MASK(ch)
designates the mapping between an element
value ch
and its classification mask, of type
mask
.
The name MASK
is purely symbolic here; it is not
defined by the template class. For an object of class
ctype<char>
,
the mapping is tab[(unsigned char)(char)ch]
,
where tab
is the stored pointer to the
ctype mask table.
The second protected member template function stores in
dst[I]
the value
MASK(first[I]) & msk
, where
I
ranges over the interval [0, last - first)
.
virtual char do_narrow(E ch, char dflt) const; virtual const E *do_narrow(const E *first, const E *last, char dflt, char *dst) const;
The first protected member template function returns
(char)ch
, or dflt
if that expression
is undefined.
The second protected member template function stores in
dst[I]
the value do_narrow(first[I], dflt)
, for
I
in the interval [0, last - first)
.
virtual const E *do_scan_is(mask msk, const E *first, const E *last) const;
The protected member function returns the smallest pointer
p
in the range [first, last)
for which
do_is(msk, *p)
is true.
If no such value exists, the function returns last
.
virtual const E *do_scan_not(mask msk, const E *first, const E *last) const;
The protected member function returns the smallest pointer
p
in the range [first, last)
for which
do_is(msk, *p)
is false.
If no such value exists, the function returns last
.
virtual E do_tolower(E ch) const; virtual const E *do_tolower(E *first, E *last) const;
The first protected member template function returns
the lowercase character corresponding to ch
,
if such a character exists. Otherwise, it returns ch
.
The second protected member template function replaces each
element first[I]
, for I
in the interval
[0, last - first)
, with do_tolower(first[I])
.
virtual E do_toupper(E ch) const; virtual const E *do_toupper(E *first, E *last) const;
The first protected member template function returns
the uppercase character corresponding to ch
,
if such a character exists. Otherwise, it returns ch
.
The second protected member template function replaces each
element first[I]
, for I
in the interval
[0, last - first)
, with do_toupper(first[I])
.
virtual E do_widen(char ch) const; virtual const char *do_widen(char *first, char *last, E *dst) const;
The first protected member template function returns
E(ch)
.
The second protected member template function stores in
dst[I]
the value do_widen(first[I])
, for
I
in the interval [0, last - first)
.
bool is(mask msk, E ch) const; const E *is(const E *first, const E *last, mask *dst) const;
The first member function returns
do_is(msk, ch)
.
The second member function returns do_is(first, last, dst)
.
char narrow(E ch, char dflt) const; const E *narrow(const E *first, const E *last, char dflt, char *dst) const;
The first member function returns
do_narrow(ch, dflt)
.
The second member function returns do_narrow(first, last,
dflt, dst)
.
const E *scan_is(mask msk, const E *first, const E *last) const;
The member function returns
do_scan_is(msk,
first, last)
.
const E *scan_not(mask msk, const E *first, const E *last) const;
The member function returns
do_scan_not(msk,
first, last)
.
E tolower(E ch) const; const E *tolower(E *first, E *last) const;
The first member function returns
do_tolower(ch)
.
The second member function returns
do_tolower(first,
last)
.
E toupper(E ch) const; const E *toupper(E *first, E *last) const;
The first member function returns
do_toupper(ch)
.
The second member function returns
do_toupper(first,
last)
.
E widen(char ch) const; const char *widen(char *first, char *last, E *dst) const;
The first member function returns
do_widen(ch)
.
The second member function returns
do_widen(first,
last, dst)
.
template<> class ctype<char> : public locale::facet, public ctype_base { public: typedef char char_type; explicit ctype(const mask *tab = 0, bool del = false, size_t refs = 0); bool is(mask msk, char ch) const; const char *is(const char *first, const char *last, mask *dst) const; const char *scan_is(mask msk, const char *first, const char *last) const; const char *scan_not(mask msk, const char *first, const char *last) const; char toupper(char ch) const; const char *toupper(char *first, char *last) const; char tolower(char ch) const; const char *tolower(char *first, char *last) const; char widen(char ch) const; const char *widen(char *first, char *last, char *dst) const; char narrow(char ch, char dflt) const; const char *narrow(const char *first, const char *last, char dflt, char *dst) const; static locale::id id; protected: ~ctype(); virtual char do_toupper(char ch) const; virtual const char *do_toupper(char *first, char *last) const; virtual char do_tolower(char ch) const; virtual const char *do_tolower(char *first, char *last) const; virtual char do_widen(char ch) const; virtual const char *do_widen(char *first, char *last, char *dst) const; virtual char do_narrow(char ch, char dflt) const; virtual const char *do_narrow(const char *first, const char *last, char dflt, char *dst) const; const mask *table() const throw(); static const mask *classic_table() const throw(); static const size_t table_size; };
The class is an explicit specialization of template class
ctype
for type char.
Hence, it describes an object that can serve as a
locale facet, to characterize
various properties of a ``character'' (element) of type char.
The explicit specialization differs from the template class in several
ways:
ctype<char>
stores a
pointer to the first element of a
ctype mask table, an array of
UCHAR_MAX + 1
elements of type
ctype_base::mask
.
It also stores a boolean object that indicates whether the array
should be deleted when the ctype<E>
object
is destroyed.tab
, the
ctype mask table, and del
,
the boolean object that is true if the array
should be deleted when the ctype<char>
object
is destroyed -- as well as the usual reference-count parameter
refs
.table()
returns the stored ctype mask table.table_size
specifies the minimum number of elements in a ctype mask table.classic_table()
returns the ctype mask table appropriate to the
"C"
locale.do_is
,
do_scan_is
, or
do_scan_not
.
The corresponding public member functions perform the
equivalent operations themselves.do_narrow
and
do_widen
simply
copy elements unaltered.class ctype_base { public: enum mask { space = 1 << 0, // EXAMPLE VALUES ONLY print = 1 << 1, cntrl = 1 << 2, upper = 1 << 3, lower = 1 << 4, digit = 1 << 5, punct = 1 << 6, xdigit = 1 << 7, alpha = 1 << 8, alnum = 0x9 << 5, graph = 0xB << 5};
The class serves as a base class for facets of template class
ctype
.
It defines just the enumeration
mask
.
Each of the enumeration constants characterizes
a different way to classify characters, as defined by the functions
with similar names declared in the header
<ctype.h>
.
The constants are:
space
(function isspace
)print
(function isprint
)cntrl
(function iscntrl
)upper
(function isupper
)lower
(function islower
)digit
(function isdigit
)punct
(function ispunct
)xdigit
(function isxdigit
)alpha
(function isalpha
)alnum
(function isalnum
)graph
(function isgraph
)You can charaterize a combination of classifications by
ORing these constants. In particular, it is always true that
alnum == (alpha | digit)
and
graph == (alnum | punct)
.
template<class E> class ctype_byname : public ctype<E> { public: explicit ctype_byname(const char *s, size_t refs = 0); protected: ~ctype_byname(); };
The template class describes an object that can serve as a
locale facet of type
ctype<E>
.
Its behavior is determined by the
named locale s
.
The constructor initializes its base object with
ctype<E>(refs)
(or the equivalent for base class
ctype<char>
).
template<class Facet> bool has_facet(const locale& loc);
The template function returns true if a
locale facet of class Facet
is listed within the
locale object loc
.
template<class E> bool isalnum(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
alnum, c)
.
template<class E> bool isalpha(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
alpha, c)
.
template<class E> bool iscntrl(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
cntrl, c)
.
template<class E> bool isdigit(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
digit, c)
.
template<class E> bool isgraph(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
graph, c)
.
template<class E> bool islower(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
lower, c)
.
template<class E> bool isprint(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
print, c)
.
template<class E> bool ispunct(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
punct, c)
.
template<class E> bool isspace(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
space, c)
.
template<class E> bool isupper(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
upper, c)
.
template<class E> bool isxdigit(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
is(ctype<E>::
xdigit, c)
.
category , classic , combine , facet , global , id , locale , name , operator!= , operator() , operator==
class locale { public: class facet; class id; typedef int category; static const category none, collate, ctype, monetary, numeric, time, messages, all; locale(); explicit locale(const char *s); locale(const locale& x, const locale& y, category cat); locale(const locale& x, const char *s, category cat); template<class Facet> locale(const locale& x, Facet *fac); template<class Facet> locale combine(const locale& x) const; template<class E, class T, class A> bool operator()(const basic_string<E, T, A>& lhs, const basic_string<E, T, A>& rhs) const; string name() const; bool operator==(const locale& x) const; bool operator!=(const locale& x) const; static locale global(const locale& x); static const locale& classic(); };
The class describes a
locale object that encapsulates a
locale. It represents
culture-specific information as a list of
facets. A facet is a
pointer to an object of a class
derived from class facet
that has a public object of the form:
static locale::id id;
You can define an open-ended set of these facets. You can also construct a locale object that designates an arbitrary number of facets.
Predefined groups of these facets represent the
locale categories
traditionally managed in the Standard C library by the function
setlocale
.
Category collate
(LC_COLLATE
)
includes the facets:
collate<char> collate<wchar_t>
Category ctype
(LC_CTYPE
)
includes the facets:
ctype<char> ctype<wchar_t> codecvt<char, char, mbstate_t> codecvt<wchar_t, char, mbstate_t>
Category monetary
(LC_MONETARY
)
includes the facets:
moneypunct<char, false> moneypunct<wchar_t, false> moneypunct<char, true> moneypunct<wchar_t, true> money_get<char, istreambuf_iterator<char> > money_get<wchar_t, istreambuf_iterator<wchar_t> > money_put<char, ostreambuf_iterator<char> > money_put<wchar_t, ostreambuf_iterator<wchar_t> >
Category numeric
(LC_NUMERIC
)
includes the facets:
num_get<char, istreambuf_iterator<char> > num_get<wchar_t, istreambuf_iterator<wchar_t> > num_put<char, ostreambuf_iterator<char> > num_put<wchar_t, ostreambuf_iterator<wchar_t> > numpunct<char> numpunct<wchar_t>
Category time
(LC_TIME
)
includes the facets:
time_get<char, istreambuf_iterator<char> > time_get<wchar_t, istreambuf_iterator<wchar_t> > time_put<char, ostreambuf_iterator<char> > time_put<wchar_t, ostreambuf_iterator<wchar_t> >
Category messages
[sic]
(LC_MESSAGE
) includes the facets:
messages<char> messages<wchar_t>
(The last category is required by Posix, but not the C Standard.)
Some of these predefined facets are used by the iostreams classes, to control the conversion of numeric values to and from text sequences.
An object of class locale
also stores a
locale name as an object of class
string
. Using an
invalid locale name to construct a
locale facet or a locale object
throws an object of class
runtime_error
.
The stored locale name is "*"
if the locale object
cannot be certain that a C-style locale corresponds exactly
to that represented by the object. Otherwise, you can establish
a matching locale within the Standard C library,
for the locale object x
, by calling
setlocale(
LC_ALL,
x.name.
c_str())
.
In this implementation, you can also call the static member function:
static locale empty();
to construct a locale object that has no facets. It is also a
transparent locale --
if the template functions
has_facet
and
use_facet
cannot find
the requested facet in a transparent locale, they consult first the
global locale and then,
if that is transparent, the
classic locale. Thus, you can write:
cout.imbue(locale::empty());
Subsequent insertions to
cout
are
mediated by the current state of the global locale.
You can even write:
locale loc(locale::empty(), locale::classic(), locale::numeric); cout.imbue(loc);
Numeric formatting rules for subsequent insertions to
cout
remain the same as in the
C locale,
even as the global locale supplies changing rules for inserting
dates and monetary amounts.
typedef int category; static const category none, collate, ctype, monetary, numeric, time, messages, all;
The type is a synonym for int so that it can represent
any of the C locale categories.
It can represent a group of distinct elements of a
bitmask type
(which is anonymous) local to class locale
.
The elements are:
collate
,
corresponding to the C category
LC_COLLATE
ctype
,
corresponding to the C category
LC_CTYPE
monetary
,
corresponding to the C category
LC_MONETARY
numeric
,
corresponding to the C category
LC_NUMERIC
time
,
corresponding to the C category
LC_TIME
messages
,
corresponding to the Posix category
LC_MESSAGE
In addition, two useful values are:
none
, corresponding to none of
the C categoriesall
,
corresponding to the C union of all categories
LC_ALL
You can represent an arbitrary group of categories by ORing
these constants, as in monetary | time
.
static const locale& classic();
The static member function returns a locale object that represents the classic locale, which behaves the same as the C locale within the Standard C library.
template<class Facet> locale combine(const locale& x) const;
The member function returns a locale object that
replaces in (or adds to) *this
the facet Facet
listed in x
.
class facet { protected: explicit facet(size_t refs = 0); virtual ~facet(); private: facet(const facet&) // not defined void operator=(const facet&) // not defined };
The member class serves as the base class for all
locale facets. Note that you
can neither copy nor assign an object of class facet
.
You can construct and destroy objects derived from class
locale::facet
, but not objects of the base class proper.
Typically, you construct an object myfac
derived
from facet
when you construct a locale, as in:
locale loc(locale::classic(), new myfac);
In such cases, the constructor for the base class facet
should have a zero refs
argument. When the object
is no longer needed, it is deleted. Thus, you supply a nonzero
refs
argument only in those rare cases where you
take responsibility for the lifetime of the object.
static locale global(const locale& x);
The static member function stores a copy of x
as the
global locale. It also calls
setlocale(
LC_ALL,
x.name.
c_str())
,
to establishing a matching locale within the Standard C library.
The function then returns the previous global locale. At
program startup,
the global locale is the same as the
classic locale.
class id { protected: id(); private: id(const id&) // not defined void operator=(const id&) // not defined };
The member class describes the static
member object required by each unique
locale facet. Note that you
can neither copy nor assign an object of class id
.
locale(); explicit locale(const char *s); locale(const locale& x, const locale& y, category cat); locale(const locale& x, const char *s, category cat); template<class Facet> locale(const locale& x, Facet *fac);
The first constructor initializes the object to match the
global locale. The second constructor
initializes all the
locale categories to have behavior
consistent with the locale name
s
. The remaining constructors copy x
,
with the exceptions noted:
locale(const locale& x, const locale& y, category cat);
replaces from y
those facets
corresponding to a category c
for which c & cat
is nonzero.
locale(const locale& x, const char *s, category cat);
replaces from locale(s, all)
those facets
corresponding to a category c
for which c & cat
is nonzero.
template<class Facet> locale(const locale& x, Facet *fac);
replaces in (or adds to) x
the facet fac
,
if fac
is not a null pointer.
If a locale name s
is a null pointer or otherwise
invalid, the function throws
runtime_error
.
string name() const;
The member function returns the stored locale name.
bool operator!=(const locale& x) const;
The member function returns !(*this == x)
.
template<class E, class T, class A> bool operator()(const basic_string<E, T, A>& lhs, const basic_string<E, T, A>& rhs);
The member function effectively executes:
const collate<E>& fac = use_fac<collate<E> >(*this); return (fac.compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()) < 0);
Thus, you can use a locale object as a function object.
bool operator==(const locale& x) const;
The member function returns true only if *this
and x
are copies of the same locale or have the same name (other than
"*"
).
char_type , string_type , messages , open , get , close , id , do_open , do_get , do_close
template<class E> class messages : public locale::facet, public messages_base { public: typedef E char_type; typedef basic_string<E> string_type; explicit messages(size_t refs = 0); catalog open(const string& name, const locale& loc) const; string_type get(catalog cat, int set, int msg, const string_type& dflt) const; void close(catalog cat) const; static locale::id id; protected: ~messages(); virtual catalog do_open(const string& name, const locale& loc) const; virtual string_type do_get(catalog cat, int set, int msg, const string_type& dflt) const; virtual void do_close(catalog cat) const; };
The template class describes an object that can serve as a
locale facet, to characterize
various properties of a
message catalog
that can supply messages represented as sequences of elements
of type E
.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
typedef E char_type;
The type is a synonym for the template parameter E
.
void close(catalog cat) const;
The member function calls
do_close(cat);
.
virtual void do_close(catalog cat) const;
The protected member function closes the
message catalog cat
,
which must have been opened by an earlier call to
do_open
.
virtual string_type do_get(catalog cat, int set, int msg, const string_type& dflt) const;
The protected member function endeavors to obtain a
message sequence from the
message catalog
cat
. It may make use of set
,
msg
, and dflt
in doing so.
It returns a copy of dflt
on failure. Otherwise,
it returns a copy of the specified message sequence.
virtual catalog do_open(const string& name, const locale& loc) const;
The protected member function endeavors to open a
message catalog
whose name is name
. It may make use of the locale
loc
in doing so. It returns a value that compares
less than zero on failure. Otherwise, the returned value can
be used as the first argument on a later call to
get
.
It should in any case be used as the argument on a later call to
close
.
string_type get(catalog cat, int set, int msg, const string_type& dflt) const;
The member function returns
do_get(cat, set, msg, dflt);
.
explicit messages(size_t refs = 0);
The constructor initializes its base object
with locale::facet(refs)
.
catalog open(const string& name, const locale& loc) const;
The member function returns
do_open(name, loc);
.
typedef basic_string<E> string_type;
The type describes a specialization of template class
basic_string
whose objects can store copies of the message sequences.
class messages_base { typedef int catalog; };
The class describes a type common to all specializations of
template class messages
. The type
catalog
is a synonym for type int that
describes the possible return values from
messages::do_open
.
template<class E> class messages_byname : public messages<E> { public: explicit messages_byname(const char *s, size_t refs = 0); protected: ~messages_byname(); };
The template class describes an object that can serve as a
locale facet of type
messages<E>
.
Its behavior is determined by the
named locale s
.
The constructor initializes its base object with
messages<E>(refs)
.
class money_base { enum part {none, sign, space, symbol, value}; struct pattern { char field[4]; }; };
The class describes an enumeration and a structure
common to all specializations of
template class moneypunct
.
The enumeration
part
describes the possible values in elements of the array
field
in the structure
pattern
.
The values of part
are:
none
to match zero or more spaces or generate nothingsign
to match or generate a positive or negative signspace
to match zero or more spaces or generate a spacesymbol
to match or generate a currency symbolvalue
to match or generate a monetary valuechar_type , iter_type , string_type , money_get , get , get , id , do_get , do_get
template<class E, class InIt = istreambuf_iterator<E> > class money_get : public locale::facet { public: typedef E char_type; typedef InIt iter_type; typedef basic_string<E> string_type; explicit money_get(size_t refs = 0); iter_type get(iter_type first, iter_type last, bool intl, ios_base& x, ios_base::iostate& st, long double& val) const; iter_type get(iter_type first, iter_type last, bool intl, ios_base& x, ios_base::iostate& st, string_type& val) const; static locale::id id; protected: ~money_get(); virtual iter_type do_get(iter_type first, iter_type last, bool intl, ios_base& x, ios_base::iostate& st, string_type& val) const; virtual iter_type do_get(iter_type first, iter_type last, bool intl, ios_base& x, ios_base::iostate& st, long double& val) const; };
The template class describes an object that can serve as a
locale facet, to control conversions
of sequences of type E
to monetary values.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
typedef E char_type;
The type is a synonym for the template parameter E
.
virtual iter_type do_get(iter_type first, iter_type last, bool intl, ios_base& x, ios_base::iostate& st, string_type& val) const; virtual iter_type do_get(iter_type first, iter_type last, bool intl, ios_base& x, ios_base::iostate& st, long double& val) const;
The first virtual protected member function endeavors to match
sequential elements beginning at first
in the sequence
[first, last)
until it has recognized a complete, nonempty
monetary input field.
If successful, it converts this field to a sequence of one or
more decimal digits, optionally preceded by a minus sign
(-
), to represent the amount and stores the result in the
string_type
object val
.
It returns an iterator
designating the first element beyond the monetary input field.
Otherwise, the function stores
an empty sequence in val
and sets
ios_base::failbit
in st
.
It returns an iterator designating the first element beyond
any prefix of a valid monetary input field. In either case, if the
return value equals last
, the function sets
ios_base::eofbit
in st
.
The second virtual protected member function behaves the same
as the first, except that if successful it converts
the optionally-signed digit sequence to a value of type long double
and stores that value in val
.
The format of a monetary input field is determined by the
locale facet fac
returned by the (effective) call
use_facet
<moneypunct<E, intl> >(x.
getloc())
.
Specifically:
fac.neg_format()
determines the order in which components of the field occur.fac.curr_symbol()
determines the sequence of elements that constitutes a currency symbol.fac.positive_sign()
determines the sequence of elements that constitutes a positive sign.fac.negative_sign()
determines the sequence of elements that constitutes a negative sign.fac.grouping()
determines how digits are grouped to the left of any decimal point.fac.thousands_sep()
determines the element that separates groups of digits to
the left of any decimal point.fac.decimal_point()
determines the element that separates the integer digits from the
fraction digits.fac.frac_digits()
determines the number of significant fraction digits to the right of
any decimal point.If the sign string (fac.negative_sign
or fac.positive_sign
) has more than one element, only
the first element is matched where the element equal to
money_base::sign
appears in the format pattern (fac.neg_format
).
Any remaining
elements are matched at the end of the monetary input field.
If neither string has a first element
that matches the next element in the monetary input field,
the sign string is taken as empty and the sign is positive.
If x.flags() &
showbase
is nonzero,
the string fac.curr_symbol
must match where the
element equal to
money_base::symbol
appears in the format pattern.
Otherwise, if money_base::symbol
occurs at the end of
the format pattern, and if no elements of the sign string remain
to be matched, the currency symbol is not matched.
Otherwise, the currency symbol is optionally matched.
If no instances of fac.thousands_sep()
occur in
the value portion of the monetary input field
(where the element equal to
money_base::value
appears in the format pattern), no grouping constraint is imposed. Otherwise,
any grouping constraints imposed by fac.grouping()
is enforced. Note that the resulting
digit sequence represents an integer whose
low-order fac.frac_digits()
decimal digits are considered
to the right of the decimal point.
Arbitrary
white space is matched
where the element equal to
money_base::space
appears in the format pattern, if it appears other than at the end
of the format pattern.
Otherwise, no internal white space is matched.
An element c
is considered white space if
use_facet
<ctype<E> >(x.
getloc()).
is(ctype_base::
space, c)
is true.
iter_type get(iter_type first, iter_type last, bool intl, ios_base& x, ios_base::iostate& st, long double& val) const; iter_type get(iter_type first, iter_type last, bool intl, ios_base& x, ios_base::iostate& st, string_type& val) const;
Both member functions return
do_get(first, last, intl,
x, st, val)
.
typedef InIt iter_type;
The type is a synonym for the template parameter InIt
.
explicit money_get(size_t refs = 0);
The constructor initializes its base object with
locale::facet(refs)
.
typedef basic_string<E> string_type;
The type describes a specialization of template class
basic_string
whose objects can store sequences of elements from the source sequence.
char_type , iter_type , string_type , money_put , put , put , id , do_put , do_put
template<class E, class OutIt = ostreambuf_iterator<E> > class money_put : public locale::facet { public: typedef E char_type; typedef OutIt iter_type; typedef basic_string<E> string_type; explicit money_put(size_t refs = 0); iter_type put(iter_type next, bool intl, ios_base& x, E fill, long double& val) const; iter_type put(iter_type next, bool intl, ios_base& x, E fill, string_type& val) const; static locale::id id; protected: ~money_put(); virtual iter_type do_put(iter_type next, bool intl, ios_base& x, E fill, string_type& val) const; virtual iter_type do_put(iter_type next, bool intl, ios_base& x, E fill, long double& val) const; };
The template class describes an object that can serve as a
locale facet, to control conversions
of monetary values to sequences of type E
.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
typedef E char_type;
The type is a synonym for the template parameter E
.
virtual iter_type do_put(iter_type next, bool intl, ios_base& x, E fill, string_type& val) const; virtual iter_type do_put(iter_type next, bool intl, ios_base& x, E fill, long double& val) const;
The first virtual protected member function generates
sequential elements beginning at next
to produce a
monetary output field from the
string_type
object val
.
The sequence controlled by val
must begin with
one or more decimal digits, optionally preceded by a minus sign
(-
), which represents the amount.
The function returns an iterator designating the first element beyond
the generated monetary output field.
The second virtual protected member function behaves the same
as the first, except that it effectively first converts val
to a sequence of decimal digits, optionally preceded by a minus sign,
then converts that sequence as above.
The format of a monetary output field is determined by the
locale facet fac
returned by the (effective) call
use_facet
<moneypunct<E, intl> >(x.
getloc())
.
Specifically:
fac.pos_format()
determines the order in which components of the field are generated
for a non-negative value.fac.neg_format()
determines the order in which components of the field are generated
for a negative value.fac.curr_symbol()
determines the sequence of elements to generate for a currency symbol.fac.positive_sign()
determines the sequence of elements to generate for a positive sign.fac.negative_sign()
determines the sequence of elements to generate for a negative sign.fac.grouping()
determines how digits are grouped to the left of any decimal point.fac.thousands_sep()
determines the element that separates groups of digits to
the left of any decimal point.fac.decimal_point()
determines the element that separates the integer digits from any
fraction digits.fac.frac_digits()
determines the number of significant fraction digits to the right of
any decimal point.If the sign string (fac.negative_sign
or fac.positive_sign
) has more than one element, only
the first element is generated where the element equal to
money_base::sign
appears in the format pattern (fac.neg_format
or
fac.pos_format
). Any remaining
elements are generated at the end of the monetary output field.
If x.flags() &
showbase
is nonzero,
the string fac.curr_symbol
is generated where the
element equal to
money_base::symbol
appears in the format pattern.
Otherwise, no currency symbol is generated.
If no grouping constraints are imposed by fac.grouping()
(its first element has the value
CHAR_MAX
)
then no instances of fac.thousands_sep()
are generated
in the value portion of the monetary output field
(where the element equal to
money_base::value
appears in the format pattern).
If fac.frac_digits()
is zero,
then no instance of fac.decimal_point()
is generated
after the decimal digits. Otherwise, the resulting monetary output
field places the low-order fac.frac_digits()
decimal digits to the right of the decimal point.
Padding occurs as for any numeric output field,
except that if x.flags() &
x.internal
is nonzero, any internal
padding is generated where the element equal to
money_base::space
appears in the format pattern, if it does appear.
Otherwise, internal padding occurs before the generated sequence.
The padding character is fill
.
The function calls x.width(0)
to reset the
field width to zero.
iter_type put(iter_type next, bool intl, ios_base& x, E fill, long double& val) const; iter_type put(iter_type next, bool intl, ios_base& x, E fill, string_type& val) const;
Both member functions return
do_put(next, intl,
x, fill, val)
.
typedef InIt iter_type;
The type is a synonym for the template parameter OutIt
.
explicit money_put(size_t refs = 0);
The constructor initializes its base object with
locale::facet(refs)
.
typedef basic_string<E> string_type;
The type describes a specialization of template class
basic_string
whose objects can store sequences of elements from the source sequence.
char_type , curr_symbol , decimal_point , do_curr_symbol , do_decimal_point , do_frac_digits , do_grouping , do_neg_format , do_negative_sign , do_pos_format , do_positive_sign , do_thousands_sep , frac_digits , grouping , moneypunct , neg_format , negative_sign , pos_format , positive_sign , string_type , thousands_sep
template<class E, bool Intl> class moneypunct : public locale::facet, public money_base { public: typedef E char_type; typedef basic_string<E> string_type; explicit moneypunct(size_t refs = 0); E decimal_point() const; E thousands_sep() const; string grouping() const; string_type curr_symbol() const; string_type positive_sign() const; string_type negative_sign() const; int frac_digits() const; pattern pos_format( oonst; pattern neg_format() const; static const bool intl = Intl; static locale::id id; protected: ~moneypunct(); virtual E do_decimal_point() const; virtual E do_thousands_sep() const; virtual string do_grouping() const; virtual string_type do_curr_symbol() const; virtual string_type do_positive_sign() const; virtual string_type do_negative_sign() const; virtual int do_frac_digits() const; virtual pattern do_pos_format() const; virtual pattern do_neg_format() const; };
The template class describes an object that can serve as a
locale facet, to desceibe the sequences
of type E
used to represent a
monetary input field or a
monetary output field.
If the template parameter Intl
is true, international
conventions are observed.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
The const static object
intl
stores the value
of the template parameter Intl
.
typedef E char_type;
The type is a synonym for the template parameter E
.
string_type curr_symbol() const;
The member function returns
do_curr_symbol()
.
E decimal_point() const;
The member function returns
do_decimal_point()
.
string_type do_curr_symbol() const;
The protected virtual member function returns a locale-specific sequence of elements to use as a currency symbol.
E do_decimal_point() const;
The protected virtual member function returns a locale-specific element to use as a decimal-point.
int do_frac_digits() const;
The protected virtual member function returns a locale-specific count of the number of digits to display to the right of any decimal point.
string do_grouping() const;
The protected virtual member function returns a locale-specific
rule for determining how digits
are grouped to the left of any decimal point.
The encoding is the same as for
lconv::grouping
.
pattern do_neg_format() const;
The protected virtual member function returns
a locale-specific rule for determining how to generate a
monetary output field for
a neeative amount. Each of the four elements of
pattern::field
can have the values:
none
to match zero or more spaces or generate nothingsign
to match or generate a positive or negative signspace
to match zero or more spaces or generate a spacesymbol
to match or generate a currency symbolvalue
to match or generate a monetary valueComponents of a monetary output field are generated
(and components of a
monetary input field are matched)
in the order in which these elements appear in pattern::field
.
Each of the values sign
, symbol
,
value
, and either none
or space
must appear exactly once. The value none
must not appear
first. The value space
must not appear first or last.
If Intl
is true, the order is symbol
,
sign
, none
, then value
.
The template version of moneypunct<E, Intl>
returns {money_base::symbol, money_base::sign, money_base::value,
money_base::none}
.
string_type do_negative_sign() const;
The protected virtual member function returns a locale-specific sequence of elements to use as a negative sign.
pattern do_pos_format() const;
The protected virtual member function returns
a locale-specific rule for determining how to generate a
monetary output field for
a positive amount. (It also determines how to match the components of a
monetary input field.)
The encoding is the same as for
do_neg_format
.
The template version of moneypunct<E, Intl>
returns {money_base::symbol, money_base::sign, money_base::value,
money_base::none}
.
string_type do_positive_sign() const;
The protected virtual member function returns a locale-specific sequence of elements to use as a positive sign.
E do_thousands_sep() const;
The protected virtual member function returns a locale-specific element to use as a group separator to the left of any decimal point.
int frac_digits() const;
The member function returns
do_frac_digits()
.
string grouping() const;
The member function returns
do_grouping()
.
explicit moneypunct(size_t refs = 0);
The constructor initializes its base object with
locale::facet(refs)
.
pattern neg_format() const;
The member function returns
do_neg_format()
.
string_type negative_sign() const;
The member function returns
do_negative_sign()
.
pattern pos_format() const;
The member function returns
do_pos_format()
.
string_type positive_sign() const;
The member function returns
do_positive_sign()
.
typedef basic_string<E> string_type;
The type describes a specialization of template class
basic_string
whose objects can store copies of the punctuation sequences.
E thousands_sep() const;
The member function returns
do_thousands_sep()
.
template<class E, bool Intl> class moneypunct_byname : public moneypunct<E, Intl> { public: explicit moneypunct_byname(const char *s, size_t refs = 0); protected: ~moneypunct_byname(); };
The template class describes an object that can serve as a
locale facet of type
moneypunct<E, Intl>
.
Its behavior is determined by the
named locale s
.
The constructor initializes its base object with
moneypunct<E,
Intl>(refs)
.
char_type , iter_type , num_get , get , id , do_get
template<class E, class InIt = istreambuf_iterator<E> > class num_get : public locale::facet { public: typedef E char_type; typedef InIt iter_type; explicit num_get(size_t refs = 0); iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, long& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, unsigned long& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, double& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, long double& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, void *& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, bool& val) const; static locale::id id; protected: ~num_get(); virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, long& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, unsigned long& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, double& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, long double& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, void *& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, bool& val) const; };
The template class describes an object that can serve as a
locale facet, to control conversions
of sequences of type E
to numeric values.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
typedef E char_type;
The type is a synonym for the template parameter E
.
virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, long& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, unsigned long& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, double& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, long double& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, void *& val) const; virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, bool& val) const;
The first virtual protected member function endeavors to match
sequential elements beginning at first
in the sequence
[first, last)
until it has recognized a complete, nonempty
integer input field.
If successful, it converts this field to its equivalent value as
type long, and stores the result in val
.
It returns an iterator
designating the first element beyond the numeric input field.
Otherwise, the function stores nothing in val
and sets
ios_base::failbit
in st
.
It returns an iterator designating the first element beyond
any prefix of a valid integer input field. In either case, if the
return value equals last
, the function sets
ios_base::eofbit
in st
.
The integer input field is converted by the same rules used by the
scan functions
for matching and converting a series of char elements from a file.
(Each such char element is assumed to map to an equivalent element
of type E
by a simple, one-to-one, mapping.) The equivalent
scan conversion
specification is determined as follows:
x.flags() &
ios_base::basefield ==
ios_base::oct
, the
conversion specification is lo
.x.flags() & ios_base::basefield ==
ios_base::hex
, the
conversion specification is lx
.x.flags() & ios_base::basefield == 0
, the
conversion specification is li
.ld
.The format of an integer input field is further determined by the
locale facet fac
returned by the call
use_facet
<numpunct<E>(x.
getloc())
.
Specifically:
fac.grouping()
determines how digits are grouped to the left of any decimal pointfac.thousands_sep()
determines the sequence that separates groups of digits to
the left of any decimal pointIf no instances of fac.thousands_sep()
occur in
the numeric input field, no grouping constraint is imposed. Otherwise,
any grouping constraints imposed by fac.grouping()
is enforced and separators are removed before the scan conversion
occurs.
The second virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, unsigned long& val) const;
behaves the same
as the first, except that it replaces a conversion specification
of ld
with lu
. If successful it converts
the numeric input field to a value of type unsigned long
and stores that value in val
.
The third virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, double& val) const;
behaves the same
as the first, except that it endeavors to match a complete, nonempty
floating-point input field.
fac.decimal_point()
determines the sequence that separates the integer digits from the
fraction digits.
The equivalent scan conversion specifier is lf
.
The fourth virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, long double& val) const;
behaves the same the third, except that the equivalent
scan conversion specifier is Lf
.
The fifth virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, void *& val) const;
behaves the same the first, except that the equivalent
scan conversion specifier is p
.
The sixth virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, bool& val) const;
behaves the same
as the first, except that it endeavors to match a complete, nonempty
boolean input field.
If successful it converts
the boolean input field to a value of type bool
and stores that value in val
.
A boolean input field takes one of two forms.
If x.flags() &
ios_base::boolalpha
is false, it is the same as an integer input field, except that the
converted value must be either 0 (for false) or 1 (for true).
Otherwise, the sequence must match either
fac.falsename()
(for false), or
fac.truename()
(for true).
iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, long& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, unsigned long& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, double& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, long double& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, void *& val) const; iter_type get(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, bool& val) const;
All member functions return
do_get(first, last,
x, st, val)
.
typedef InIt iter_type;
The type is a synonym for the template parameter InIt
.
explicit num_get(size_t refs = 0);
The constructor initializes its base object with
locale::facet(refs)
.
char_type , iter_type , num_put , put , id , do_put
template<class E, class OutIt = ostreambuf_iterator<E> > class num_put : public locale::facet { public: typedef E char_type; typedef OutIt iter_type; explicit num_put(size_t refs = 0); iter_type put(iter_type next, ios_base& x, E fill, long val) const; iter_type put(iter_type next, ios_base& x, E fill, unsigned long val) const; iter_type put(iter_type next, ios_base& x, E fill, double val) const; iter_type put(iter_type next, ios_base& x, E fill, long double val) const; iter_type put(iter_type next, ios_base& x, E fill, const void *val) const; iter_type put(iter_type next, ios_base& x, E fill, bool val) const; static locale::id id; protected: ~num_put(); virtual iter_type do_put(iter_type next, ios_base& x, E fill, long val) const; virtual iter_type do_put(iter_type next, ios_base& x, E fill, unsigned long val) const; virtual iter_type do_put(iter_type next, ios_base& x, E fill, double val) const; virtual iter_type do_put(iter_type next, ios_base& x, E fill, long double val) const; virtual iter_type do_put(iter_type next, ios_base& x, E fill, const void *val) const; virtual iter_type do_put(iter_type next, ios_base& x, E fill, bool val) const; };
The template class describes an object that can serve as a
locale facet, to control conversions
of numeric values to sequences of type E
.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
typedef E char_type;
The type is a synonym for the template parameter E
.
virtual iter_type do_put(iter_type next, ios_base& x, E fill, long val) const; virtual iter_type do_put(iter_type next, ios_base& x, E fill, unsigned long val) const; virtual iter_type do_put(iter_type next, ios_base& x, E fill, double val) const; virtual iter_type do_put(iter_type nextp ios_base& x, E fill, long double val) const; virtual iter_type do_put(iter_type nextp ios_base& x, E fill, const void *val) const; virtual iter_type do_put(iter_type next, ios_base& x, E fill, bool val) const;
The first virtual protected member function generates
sequential elements beginning at next
to produce an
integer output field
from the value of val
.
The function returns an iterator designating the next place to
insert an element beyond the generated integer output field.
The integer output field is generated by the same rules used by the
print functions
for generating a series of char elements to a file.
(Each such char element is assumed to map to an equivalent element
of type E
by a simple, one-to-one, mapping.) Where a
print function pads a field with either spaces or the digit 0
,
however, do_put
instead uses fill
.
The equivalent
print conversion
specification is determined as follows:
x.flags() &
ios_base::basefield ==
ios_base::oct
, the
conversion specification is lo
.x.flags() & ios_base::basefield ==
ios_base::hex
, the
conversion specification is lx
.ld
.If x.width()
is nonzero, a field width of this value is prepended. The
function then calls x.width(0)
to reset the
field width to zero.
Padding occurs only if
the minimum number of elements N
required to
specify the output field is less than
x.width()
.
Such padding consists of a sequence of N - width()
copies of
fill
. Padding then occurs as follows:
x.flags() &
ios_base::adjustfield ==
ios_base::left
,
the flag -
is prepended. (Padding occurs
after the generated text.)
x.flags() & ios_base::adjustfield ==
ios_base::internal
,
the flag 0
is prepended. (For a numeric output field,
padding occurs where the print functions pad with 0
.)Finally:
x.flags() &
ios_base::showpos
is nonzero, the flag +
is prepended to the conversion
specification.x.flags() &
ios_base::showbase
is nonzero, the flag #
is prepended to the conversion
specification.The format of an integer output field is further determined by the
locale facet fac
returned by the call
use_facet
<numpunct<E>(x.
getloc())
.
Specifically:
fac.grouping()
determines how digits are grouped to the left of any decimal pointfac.thousands_sep()
determines the sequence that separates groups of digits to
the left of any decimal pointIf no grouping constraints are imposed by fac.grouping()
(its first element has the value
CHAR_MAX
)
then no instances of fac.thousands_sep()
are generated
in the output field. Otherwise, separators are inserted after the
print conversion occurs.
The second virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x, E fill, unsigned long val) const;
behaves the same
as the first, except that it replaces a conversion specification
of ld
with lu
.
The third virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x, E fill, double val) const;
behaves the same as the first, except that it produces a
floating-point output field
from the value of val
.
fac.decimal_point()
determines the sequence that separates the integer digits from the
fraction digits.
The equivalent print conversion specification is determined as follows:
x.flags() &
ios_base::floatfield ==
ios_base::fixed
, the
conversion specification is lf
.x.flags() & ios_base::floatfield ==
ios_base::scientific
, the
conversion specification is le
.
If x.flags() &
ios_base::uppercase
is nonzero, e
is replaced with E
.lg
.
If x.flags() & ios_base::uppercase
is nonzero, g
is replaced with G
.If x.flags() & ios_base::fixed
is nonzero, or if
x.precision()
is greater than zero, a precision with the value
x.precision()
is prepended to the conversion specification.
Any padding behaves the same
as for an integer output field. The padding character is
fill
. Finally:
x.flags() &
ios_base::showpos
is nonzero, the flag +
is prepended to the conversion
specification.x.flags() &
ios_base::showpoint
is nonzero, the flag #
is prepended to the conversion
specification.The fourth virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x, E fill, long double val) const;
behaves the same the third, except that the qualifier
l
in the conversion specification is replaced with
L
.
The fifth virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x, E fill, const void *val) const;
behaves the same the first, except that the conversion specification
is p
, plus any qualifier needed to specify padding.
The sixth virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x, E fill, bool val) const;
behaves the same
as the first, except that it generates a
boolean output field
from val
.
A boolean output field takes one of two forms.
If x.flags() &
ios_base::boolalpha
is false, the generated sequence is either 0
(for false)
or 1
(for true).
Otherwise, the generated sequence is either
fac.falsename()
(for false), or
fac.truename()
(for true).
iter_type put(iter_type next, ios_base& x, E fill, long val) const; iter_type put(iter_type next, ios_base& x, E fill, unsigned long val) const; iter_type put(iter_type iter_type next, ios_base& x, E fill, double val) const; iter_type put(iter_type next, ios_base& x, E fill, long double val) const; iter_type put(iter_type next, ios_base& x, E fill, const void *val) const; iter_type put(iter_type next, ios_base& x, E fill, bool val) const;
All member functions return
do_put(next,
x, fill, val)
.
typedef InIt iter_type;
The type is a synonym for the template parameter OutIt
.
explicit num_put(size_t refs = 0);
The constructor initializes its base object with
locale::facet(refs)
.
char_type , decimal_point , do_decimal_point , do_falsename , do_grouping , do_truename , do_thousands_sep , falsename , grouping , numpunct , string_type , thousands_sep , truename
template<class E, class numpunct : public locale::facet { public: typedef E char_type; typedef basic_string<E> string_type; explicit numpunct(size_t refs = 0); E decimal_point() const; E thousands_sep() const; string grouping() const; string_type truename() const; string_type falsename() const; static locale::id id; protected: ~numpunct(); virtual E do_decimal_point() const; virtual E do_thousands_sep() const; virtual string do_grouping() const; virtual string_type do_truename() const; virtual string_type do_falsename() const; };
The template class describes an object that can serve as a
locale facet, to desceibe the sequences
of type E
used to represent the input fields matched by
num_get
or the output fields generated by
num_get
.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
typedef E char_type;
The type is a synonym for the template parameter E
.
E decimal_point() const;
The member function returns
do_decimal_point()
.
E do_decimal_point() const;
The protected virtual member function returns a locale-specific element to use as a decimal-point.
string_type do_falsename() const;
The protected virtual member function returns a locale-specific sequence to use as a text representation of the value false.
string do_grouping() const;
The protected virtual member function returns a locale-specific
rule for determining how digits
are grouped to the left of any decimal point.
The encoding is the same as for
lconv::grouping
.
E do_thousands_sep() const;
The protected virtual member function returns a locale-specific element to use as a group separator to the left of any decimal point.
string_type do_truename() const;
The protected virtual member function returns a locale-specific sequence to use as a text representation of the value true.
string_type falsename() const;
The member function returns
do_falsename()
.
string grouping() const;
The member function returns
do_grouping()
.
explicit numpunct(size_t refs = 0);
The constructor initializes its base object with
locale::facet(refs)
.
typedef basic_string<E> string_type;
The type describes a specialization of template class
basic_string
whose objects can store copies of the punctuation sequences.
E thousands_sep() const;
The mmmber function returns
do_thousands_sep()
.
string_type falsename() const;
The member function returns
do_truename()
.
template<class E> class numpunct_byname : public numpunct<E> { public: explicit numpunct_byname(const char *s, size_t refs = 0); protected: ~numpunct_byname(); };
The template class describes an object that can serve as a
locale facet of type
numpunct<E>
.
Its behavior is determined by the
named locale s
.
The constructor initializes its base object with
numpunct<E>(refs)
.
class time_base { public: enum dateorder {no_order, dmy, mdy, ymd, ydm}; };
The class serves as a base class for facets of template class
time_get
.
It defines just the enumerated type
dateorder
and several constants of this type. Each of the constants characterizes
a different way to order the components of a date.
The constants are:
no_order
specifies no particular order.dmy
specifies the order day, month, then year, as in
2 December 1979
.mdy
specifies the order month, day, then year, as in
December 2, 1979
.ymd
specifies the order year, month, then day, as in
1979/12/2
.ydm
specifies the order year, day, then month, as in
1979: 2 Dec
.char_type , iter_type , time_get , date_order , get_time , get_date , get_weekday , get_month , get_year , id , do_date_order , do_get_time , do_get_date , do_get_weekday , do_get_month , do_get_year
template<class E, class InIt = istreambuf_iterator<E> > class time_get : public locale::facet { public: typedef E char_type; typedef InIt iter_type; explicit time_get(size_t refs = 0); dateorder date_order() const; iter_type get_time(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; iter_type get_date(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; iter_type get_weekday(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; iter_type get_month(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; iter_type get_year(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; static locale::id id; protected: ~time_get(); virtual dateorder do_date_order() const; virtual iter_type do_get_time(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; virtual iter_type do_get_date(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; virtual iter_type do_get_weekday(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; virtual iter_type do_get_month(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; virtual iter_type do_get_year(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const; };
The template class describes an object that can serve as a
locale facet, to control conversions
of sequences of type E
to time values.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
typedef E char_type;
The type is a synonym for the template parameter E
.
dateorder date_order() const;
The member function returns
date_order()
.
virtual dateorder do_date_order() const;
The virtual protected member function returns a value of type
time_base::dateorder
,
which describes the order in which date components are matched by
do_get_date
.
In this implementation,
the value is
time_base::mdy
, corresponding
to dates of the form December 2, 1979.
virtual iter_type do_get_date(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match
sequential elements beginning at first
in the sequence
[first, last)
until it has recognized a complete, nonempty
date input field.
If successful, it converts this field to its equivalent value as
the components
tm::tm_mon
,
tm::tm_day
, and tm::tm_year
,
and stores the results in pt->tm_mon
,
pt->tm_day
and pt->tm_year
, respectively.
It returns an iterator
designating the first element beyond the date input field.
Otherwise, the function sets
ios_base::failbit
in st
.
It returns an iterator designating the first element beyond
any prefix of a valid date input field. In either case, if the
return value equals last
, the function sets
ios_base::eofbit
in st
.
In this implementation,
the date input field has the form MMM DD, YYYY
, where:
MMM
is matched by calling
get_month
,
giving the month.DD
is a sequence of decimal digits whose
corresponding numeric value must be in the range [1, 31],
giving the day of the month.YYYY
is matched by calling
get_year
, giving the year.virtual iter_type do_get_month(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match
sequential elements beginning at first
in the sequence
[first, last)
until it has recognized a complete, nonempty
month input field.
If successful, it converts this field to its equivalent value as
the component
tm::tm_mon
,
and stores the result in pt->tm_mon
.
It returns an iterator
designating the first element beyond the month input field.
Otherwise, the function sets
ios_base::failbit
in st
.
It returns an iterator designating the first element beyond
any prefix of a valid month input field. In either case, if the
return value equals last
, the function sets
ios_base::eofbit
in st
.
The month input field is a sequence that matches the longest
of a set of locale-specific sequences, such as: Jan
,
January
, Feb
, February
, etc.
The converted value is the number of months since January.
virtual iter_type do_get_time(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match
sequential elements beginning at first
in the sequence
[first, last)
until it has recognized a complete, nonempty
time input field.
If successful, it converts this field to its equivalent value as
the components
tm::tm_hour
,
tm::tm_min
, and tm::tm_sec
,
and stores the results in pt->tm_hour
,
pt->tm_min
and pt->tm_sec
, respectively.
It returns an iterator
designating the first element beyond the time input field.
Otherwise, the function sets
ios_base::failbit
in st
.
It returns an iterator designating the first element beyond
any prefix of a valid time input field. In either case, if the
return value equals last
, the function sets
ios_base::eofbit
in st
.
In this implementation,
the time input field has the form HH:MM:SS
, where:
HH
is a sequence of decimal digits whose
corresponding numeric value must be in the range [0, 24), giving
the hour of the day.MM
is a sequence of decimal digits whose
corresponding numeric value must be in the range [0, 60), giving
the minutes past the hour.SS
is a sequence of decimal digits whose
corresponding numeric value must be in the range [0, 60), giving
the seconds past the minute.virtual iter_type do_get_weekday(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match
sequential elements beginning at first
in the sequence
[first, last)
until it has recognized a complete, nonempty
weekday input field.
If successful, it converts this field to its equivalent value as
the component
tm::tm_wday
,
and stores the result in pt->tm_wday
.
It returns an iterator
designating the first element beyond the weekday input field.
Otherwise, the function sets
ios_base::failbit
in st
.
It returns an iterator designating the first element beyond
any prefix of a valid weekday input field. In either case, if the
return value equals last
, the function sets
ios_base::eofbit
in st
.
The weekday input field is a sequence that matches the longest
of a set of locale-specific sequences, such as: Sun
,
Sunday
, Mon
, Monday
, etc.
The converted value is the number of days since Sunday.
virtual iter_type do_get_year(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match
sequential elements beginning at first
in the sequence
[first, last)
until it has recognized a complete, nonempty
year input field.
If successful, it converts this field to its equivalent value as
the component
tm::tm_year
,
and stores the result in pt->tm_year
.
It returns an iterator
designating the first element beyond the year input field.
Otherwise, the function sets
ios_base::failbit
in st
.
It returns an iterator designating the first element beyond
any prefix of a valid year input field. In either case, if the
return value equals last
, the function sets
ios_base::eofbit
in st
.
The year input field is a sequence of decimal digits whose corresponding numeric value must be in the range [1900, 2036). The stored value is this value minus 1900. In this implementation, a numeric value in the range [0, 136) is also permissible. Values in the range [0, 69) represent the range of years [2000, 2069). Values in the range [69, 136) represent the range of years [1969, 2036).
iter_type get_date(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns
do_get_date(first, last,
x, st, pt)
.
iter_type get_month(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns
do_get_month(first, last,
x, st, pt)
.
iter_type get_time(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns
do_get_time(first, last,
x, st, pt)
.
iter_type get_weekday(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns
do_get_weekday(first, last,
x, st, pt)
.
iter_type get_year(iter_type first, iter_type last, ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns
do_get_year(first, last,
x, st, pt)
.
typedef InIt iter_type;
The type is a synonym for the template parameter InIt
.
explicit time_get(size_t refs = 0);
The constructor initializes its base object with
locale::facet(refs)
.
template<class E, class InIt> class time_get_byname : public time_get<E, InIt> { public: explicit time_get_byname(const char *s, size_t refs = 0); protected: ~time_get_byname(); };
The template class describes an object that can serve as a
locale facet of type
time_get<E, InIt>
.
Its behavior is determined by the
named locale s
.
The constructor initializes its base object with
time_get<E,
InIt>(refs)
.
char_type , iter_type , time_put , put , put , id , do_put
template<class E, class OutIt = ostreambuf_iterator<E> > class time_put : public locale::facet { public: typedef E char_type; typedef OutIt iter_type; explicit time_put(size_t refs = 0); iter_type put(iter_type next, ios_base& x, char_type fill, const tm *pt, char fmt, char mod = 0) const; iter_type put(iter_type next, ios_base& x, char_type fill, const tm *pt, const E *first, const E *last) const; static locale::id id; protected: ~time_put(); virtual iter_type do_put(iter_type next, ios_base& x, char_type fill, const tm *pt, char fmt, char mod = 0) const; };
The template class describes an object that can serve as a
locale facet, to control conversions
of time values to sequences of type E
.
As with any locale facet, the static object
id
has an initial
stored value of zero. The first attempt to access its stored value
stores a unique positive value in id
.
typedef E char_type;
The type is a synonym for the template parameter E
.
virtual iter_type do_put(iter_type next, ios_base& x, char_type fill, const tm *pt, char fmt, char mod = 0) const;
The virtual protected member function generates
sequential elements beginning at next
from
time values stored in the object *pt
, of type
tm
.
The function returns an iterator designating the next place to
insert an element beyond the generated output.
The output is generated by the same rules used by
strftime
,
with a last argument of pt
,
for generating a series of char elements into an array.
(Each such char element is assumed to map to an equivalent element
of type E
by a simple, one-to-one, mapping.)
If mod
equals zero, the effective format is
"%F"
, where F
equals fmt
.
Otherwise, the effective format is
"%MF"
, where M
equals mod
.
The parameter fill
is not used.
iter_type put(iter_type next, ios_base& x, char_type fill, const tm *pt, char fmt, char mod = 0) const; iter_type put(iter_type next, ios_base& x, char_type fill, const tm *pt, const E *first, const E *last) const;
The first member function returns
do_put(next,
x, fill, pt, fmt, mod)
. The second member function
copies to *next++
any element in the interval
[first, last)
other than a percent (%
).
For a percent followed by a character C
in the interval
[first, last)
, the function instead evaluates
next = do_put(next, x, fill, pt, C, 0)
and skips past C
.
If, however, C
is a qualifier character from the set
EOQ#
, followed by a character C2
in the interval
[first, last)
, the function instead evaluates
next = do_put(next, x, fill, pt, C2, C)
and skips past C2
.
typedef InIt iter_type;
The type is a synonym for the template parameter OutIt
.
explicit time_put(size_t refs = 0);
The constructor initializes its base object with
locale::facet(refs)
.
template<class E, class OutIt> class time_put_byname : public time_put<E, OutIt> { public: explicit time_put_byname(const char *s, size_t refs = 0); protected: ~time_put_byname(); };
The template class describes an object that can serve as a
locale facet of type
time_put<E, OutIt>
.
Its behavior is determined by the
named locale s
.
The constructor initializes its base object with
time_put<E,
OutIt>(refs)
.
template<class E> E tolower(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
tolower(c)
.
template<class E> E toupper(E c, const locale& loc) const;
The template function returns
use_facet<
ctype<E> >(loc).
toupper(c)
.
template<class Facet> const Facet& use_facet(const locale& loc);
The template function returns a reference to the
locale facet of class Facet
listed within the
locale object loc
.
If no such object is listed, the function throws an object of class
bad_cast
.
Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by Hewlett-Packard Company. All rights reserved.